topological dimension - definição. O que é topological dimension. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é topological dimension - definição

INVARIANT ASSOCIATED TO A TOPOLOGICAL SPACE; THE SMALLEST INTEGER 𝑛 SUCH THAT, FOR EVERY COVER, THERE IS A REFINEMENT IN WHICH EVERY POINT LIES IN THE INTERSECTION OF AT MOST 𝑛+1 COVERING SETS
Lebesgue dimension; Covering dimension; Lebesgue covering theorem; Topological dimension; Ostrand's theorem
  • 1921}}

Lebesgue covering dimension         
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a
Dimension (data warehouse)         
STRUCTURE THAT CATEGORIZES FACTS AND MEASURES IN A DATA WAREHOUSE
Dimension table; Dimension(data warehouse); Dimensional Role-Playing; Data dimension; Conformed dimension
A dimension is a structure that categorizes facts and measures in order to enable users to answer business questions. Commonly used dimensions are people, products, place and time.
Topological property         
OBJECT OF STUDY IN THE CATEGORY OF TOPOLOGICAL SPACES
Topological invariant; Topological properties
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms.

Wikipédia

Lebesgue covering dimension

In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.